Low-density lipoprotein receptor-knockout mice display impaired spatial memory associated with a decreased synaptic density in the hippocampus.
نویسندگان
چکیده
The low-density lipoprotein receptor (LDLR) is the first described receptor for apolipoprotein E (apoE). We hypothesize that the absence of the LDLR, similar to the absence of apoE, results in impaired learning and memory processes. Six-month-old homozygous Ldlr-/- and wild-type littermates (Ldlr+/+), maintained on a standard lab chow diet, were used. Unlike humans, Ldlr-/- mice, under these conditions, do not develop atherosclerosis. The results of the Morris water escape task revealed an impaired spatial memory in the Ldlr-/- mice in comparison with Ldlr+/+ mice. Also in a T-maze task, the working memory performance of the Ldlr-/- mice was impaired. Furthermore, Ldlr-/- mice, in comparison with Ldlr+/+ mice, display a decreased number of synaptophysin-immunoreactive presynaptic boutons in the hippocampus CA1. In conclusion, the results show in mice deficiency for the LDLR results in impaired hippocampal-dependent memory functions. A decrease in the number of presynaptic boutons may underlay these behavioral alterations. Therefore, the LDLR may be an important receptor for apoE in the central nervous system.
منابع مشابه
Reelin and ApoE receptors cooperate to enhance hippocampal synaptic plasticity and learning.
Two apolipoprotein E (apoE) receptors, the very low density lipoprotein (VLDL) receptor and apoE receptor 2 (apoER2), are also receptors for Reelin, a signaling protein that regulates neuronal migration during brain development. In the adult brain, Reelin is expressed by GABA-ergic interneurons, suggesting a potential function as a modulator of neurotransmission. ApoE receptors have been indire...
متن کاملIL1RAPL1 knockout mice show spine density decrease, learning deficiency, hyperactivity and reduced anxiety-like behaviours
IL-1 receptor accessory protein-like 1 (IL1RAPL1) is responsible for nonsyndromic intellectual disability and is associated with autism. IL1RAPL1 mediates excitatory synapse formation through trans-synaptic interaction with PTPδ. Here, we showed that the spine density of cortical neurons was significantly reduced in IL1RAPL1 knockout mice. The spatial reference and working memories and remote f...
متن کاملProlyl endopeptidase-deficient mice have reduced synaptic spine density in the CA1 region of the hippocampus, impaired LTP, and spatial learning and memory.
Prolyl endopeptidase (PREP) is a phylogenetically conserved serine protease and, in humans and rodents, is highly expressed in the brain. Several neuropeptides associated with learning and memory and neurodegenerative disorders have been proposed to be the substrates for PREP, suggesting a possible role for PREP in these processes. However, its physiological function remains elusive. Combining ...
متن کاملToll-like receptor 4 deficiency decreases atherosclerosis but does not protect against inflammation in obese low-density lipoprotein receptor-deficient mice.
OBJECTIVE Obesity is associated with insulin resistance, chronic low-grade inflammation, and atherosclerosis. Toll-like receptor 4 (TLR4) participates in the cross talk between inflammation and insulin resistance, being activated by both lipopolysaccharide and saturated fatty acids. The present study was undertaken to determine whether TLR4 deficiency has a protective role in inflammation, insu...
متن کاملImpaired Cognitive Function and Altered Hippocampal Synapse Morphology in Mice Lacking Lrrtm1, a Gene Associated with Schizophrenia
Recent genetic linkage analysis has shown that LRRTM1 (Leucine rich repeat transmembrane neuronal 1) is associated with schizophrenia. Here, we characterized Lrrtm1 knockout mice behaviorally and morphologically. Systematic behavioral analysis revealed reduced locomotor activity in the early dark phase, altered behavioral responses to novel environments (open-field box, light-dark box, elevated...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neurobiology of disease
دوره 16 1 شماره
صفحات -
تاریخ انتشار 2004